سال 3، شماره 2 - ( پاییز و زمستان 1396 )                   جلد 3 شماره 2 صفحات 63-81 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- دانشگاه هنر اسلامی تبریز ، f.haghparast@tabriziau.ac.ir
2- دانشگاه هنر اسلامی تبریز
چکیده:   (432 مشاهده)
پوشش یک بنا در مقام مرز بین داخل و خارج، در تقابل هم‏زمان با طبیعت و آسایش انسانی است. در این میان اقلیم شهر تبریز از بُعد طبیعی و اقلیمی برخورد پرتنش‏‌تری با جدارۀ بنا دارد و نقش پوستۀ بنا را پررنگ‌‏تر می‌‏نماید. بنابراین مطالعۀ مرز تفکیکی طبیعت و انسان در این شهر، ضرورت این پژوهش را به اثبات می‌‏رساند. از بنایی چون مسجد انتظار می‏‌رود بتواند شرایط آسایش انسان را به نحو احسن تأمین کند و خود در مقابل شرایط اقلیمی رفتاری خودکفا داشته باشد. در این راستا جدارۀ بیرونی بنا، نقش بسزایی در حفظ شرایط ایجادشده در داخل و ممانعت از نفوذ شرایط اقلیمی بیرون به داخل دارد. مطالعات پژوهش حاضر بر این اصل استوار است که مساجد سنّتی به دلیل ضخامت بدنه‌‏ها رفتار مناسب‏‌تری در قبال پارامترهای حرارتی از خود نشان می‏‌دهد و به دنبال تعیین میزان و حدِ رفتار مذکور است. به همین منظور دو مسجد از دو گروهِ نمونه‏‌های سنّتی و معاصر انتخاب شده و مورد سنجش قرار گرفته است. روش تحقیق این پژوهش در بخش مطالعات میدانی، محاسبات دقیق است. پس از انجام سنجش میدانی و اندازه‏‌گیری چند نقطه در جداره‏‌های بیرونی مساجد، محاسبات مربوط به میزان اتلاف حرارت انجام شده و نتایج آنها به منظور دستیابی به عدد اختلاف حرارتی، با هم قیاس شده است. نتایج پژوهش نشان می‏‌دهد میزان اتلاف حرارتی جداره‏‌های پیرامونی مساجد نوساز، تا نزدیک دو برابر بیشتر از نمونه‌‏های سنّتی است و این امر عملکردِ حرارتیِ مطلوبِ دیوارهای مساجد سنّتی را از منظر عددی و کمّی نیز ثابت می‌‏کند.
واژه‌های کلیدی: رفتار حرارتی، جداره، مسجد.
متن کامل [PDF 5550 kb]   (189 دریافت)    

فهرست منابع
1. The author's group of Iranian Energy Efficiency Organization (SABA). 2004. Energy management in the building. Tehtan: Ministry of power- Energy Efficiency Organization of Iran (SABA) [in Persian].
2. Al-Obaidi, K. M., M. Ismail, and A. M. Abdul Rahman. 2014. Passive cooling techniques through reflective and radiative roofs in tropical houses in Southeast Asia: A literature review. Frontiers of Architectural Research 3(3): 283‒97. [DOI:10.1016/j.foar.2014.06.002]
3. Asan, H., and Y. S. San. 1998. Effects of wall's thermophysical properties on time lag and decrement factor. Energy Build 28: 159–66. [DOI:10.1016/S0378-7788(98)00007-3]
4. Building and Housing Research Center. 2010. Chapter 19 of the National Building Regulations. Third edition, Tehran: Building and Housing Research Center [in Persian].
5. Cantin, R., J. Burgholzer, G. Guarracino, B. Moujalled, S.Tamelikecht, and B. G. Royet. 2010. Field assessment of thermal behaviour of historical dwellings in France. Building and Environment 45 (2): 473–84. [DOI:10.1016/j.buildenv.2009.07.010]
6. Cena, K., and R. D. Dear. 2001. Thermal comfort and behavioural strategies in office buildings located in a hot-arid climate. Journal of Thermal Biology. 26: 409–14. [DOI:10.1016/S0306-4565(01)00052-3]
7. Dili, A. S., M. A. Naseer, and T. Zacharia Varghese. 2010a. Passive control methods of Kerala traditional architecture for a comfortable indoor environment: Comparative investigation during various periods of rainy season. Building and Environment 45 (10): 2218–30. [DOI:10.1016/j.buildenv.2010.04.002]
8. Dili, A. S., M. A. Naseer, and T. Zacharia Varghese. 2010b. Passive environment control system of Kerala vernacular residential architecture for a comfortable indoor environment: A qualitative and quantitative analyses. Energy and Buildings 42 (6): 917–27. [DOI:10.1016/j.enbuild.2010.01.002]
9. Dili, A. S., M. A. Naseer, and T. Zacharia Varghese. 2011. Passive control methods for a comfortable indoor environment: Comparative investigation of traditional and modern architecture of Kerala in summer. Energy and Buildings 43 (2‒3): 653–64. [DOI:10.1016/j.enbuild.2010.11.006]
10. Faghih, A. K., and M. N. Bahadori. 2011. Thermal performance evaluation of domed roofs. Energy and Buildings 43 (6): 1254–12. [DOI:10.1016/j.enbuild.2011.01.002]
11. Gallo, C. 1998. The utilization of microclimate elements. Renewable and Sustainable Energy Reviews 2: 89‒114. [DOI:10.1016/S1364-0321(98)00013-6]
12. Givoni, B. 2011. Indoor temperature reduction by passive cooling systems. Solar Energy 85 (8): 1692–1726. [DOI:10.1016/j.solener.2009.10.003]
13. Hadavand, M., and M. Yaghoubi. 2008. Thermal behavior of curved roof buildings exposed to solar radiation and wind flow for various orientations. Applied Energy 85 (8): 663–79. [DOI:10.1016/j.apenergy.2008.01.002]
14. Hatamipour, M. S., and A. Abedi. 2008. Passive cooling systems in buildings: Some useful experiences from ancient architecture for natural cooling in a hot and humid region. Energy Conversion and Management 49 (8): 2317–23. [DOI:10.1016/j.enconman.2008.01.018]
15. Kočí, V., Z. Bažantová, and R. Černý. 2014. Computational analysis of thermal performance of a passive family house built of hollow clay bricks. Energy and Buildings 76: 211–18. [DOI:10.1016/j.enbuild.2014.02.066]
16. Moropoulou, A., K. C. Labropoulos, E. T. Delegou, M. Karoglou, and A. Bakolas. 2013. Non-destructive techniques as a tool for the protection of built cultural heritage. Construction and Building Materials 48: 1222–39. [DOI:10.1016/j.conbuildmat.2013.03.044]
17. Nayak, J. K., and J. A. Prajapati. 2006. Handbook on Energy Conscious Buildings. R & D Project No. 3/4(03)/99-SEC between Indian Institute of Technology. Bombay and Solar Energy Centre. Ministry of Non-Conventional Energy Sources.
18. Singeri, M. and S. Abdoli Naser. 2012. A comparative study of external envelop of residential units in traditional and modern textures of Tabriz with a sustainable approach. Journal of studies on Iranian-Islamic city 7(2): 53‒62 [in Persian].
19. Taleb, H. M. 2014. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in U. A. E. buildings. Frontiers of Architectural Research 3 (2): 154–65. [DOI:10.1016/j.foar.2014.01.002]
20. Wilson, B. Y. A. 1979. Thermal storage wall design manual. New Mexico solar energy association.
21. Zhang, Y., Q. Chen, Y. Zhang, and X. Wang. 2013. Exploring buildings' secrets: The ideal thermophysical properties of a building's wall for energy conservation. International Journal of Heat and Mass Transfer 65: 265–73. [DOI:10.1016/j.ijheatmasstransfer.2013.06.008]